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Abstract— There has been a surge of interest towards deep learning based, image fusion methods in recent years. Through the process 

of image fusion, complimentary information is extracted from images that have been captured by multiple sensors. Irrelevant 

characteristics are screened out and the remaining relevant information is combined to enrich the detail and quality of these images. In 

the context of low light, image fusion techniques face difficulties while preserving the details and diminishing the noise produced in the 

resulting fused image. This occurs mainly due to the lack of visibility caused by insufficient lighting. Such conditions severely impact the 

fused images generated by the model. This research paper aims to conduct a comparative analysis of several state-of-the-art, deep 

learning based image fusion models for low light surveillance applications. Additionally, our paper will investigate the merits and 

challenges corresponding to each method in the context of low light image fusion. The results of our comparative analysis revealed that 

‘SwinFuse’ exhibited superior performance when compared with other methods in preserving image details and reducing noise in the 

fused images. 

 

Index Terms— Image Fusion, Low Light Surveillance, Visible and Infrared Images. 

 

I. INTRODUCTION 

In today's evolving world, the role played by surveillance 

systems cannot be downplayed. Surveillance systems play 

a vital role in the safety and security of the community. They 

act as the primary tools for crimeprevention, threat detection 

and investigation. The clarity and resolution of the images 

captured is crucial to ensure the effectiveness of the 

surveillance systems, especially in conditions with limited 

visibility. Deep learning based image fusion offers 

sophisticated solutions to deal with the limitations induced by 

low lighting [1]. This involves combining multiple images 

captured by different sensors, such as visible and infrared 

image sensors and creating a resulting fused image that

 embodies enhanced visibility and betteroverall situational 

awareness for tasks such as object detection. However, image 

fusion under low light is still a challenging task. This is 

because factors such as noise, low contrast and limited 

visibility are induced in images that are captured under low 

light, all of which contribute to the degradation of the fused 

image. In recent years, new techniques have been Devised 

that are impervious to these aforementioned challenges. 

Majority of these techniques utilise visible (VIS) and infrared 

(IR) images for image fusion [2]. 

Infrared images have the capability of capturing thermal 

radiation that is emitted by objects. Hence, they have found 

usage in object detection in little to no light conditions. They 

are also impervious to conditions such as smoke, fog [3], 

haze and obstructions. However, IR images lack colour 

information, textural details, and have lower spatial 

resolution when compared to visible spectrum images. 

Whereas, Visible images offer detailed colour information 

and higher spatial resolution [2]. This in turn enhances the 

overall quality of the fused image. But in low light conditions, 

visible images are susceptible to reduced visibility and noise 

[4], limiting their usefulness in image fusion. Thus by 

utilising both visible and infrared images, we can compensate 

for each of their limitations [5] and create a more robust 

image fusion technique for low light surveillance 

applications. 

The organisation of this paper is as follows. In the next 

section a comprehensive analysis of the related works is 

performed. Four state-of-the-art deep learning based image 

fusion methods are depicted in section III. Low Light 

Visible-Infrared Paired (LLVIP) Dataset [7] is used to 

perform experiments, and qualitative and quantitative 

comparisons are done in section IV. At last conclusions are 

drawn in section V. 

II. LITERATURE SURVEY 

Image fusion, which combines information from visible 

and infrared cameras, holds great promise in enhancing 

visibility, object detection, and overall situational awareness 

in surveillance applications [1]. These methods often utilise 

deep learning frameworks to extract features and optimise 

fusion strategies for different scales of source images [6]. 

Multiple state-of-the-art, deep learning-based image fusion 

methods have been designed to overcome these challenges. 

For example, DenseFuse, focuses on fusing infrared and 

visible images using a convolutional neural network (CNN) 

[4]. Similarly, FusionDN introduces a unified densely 

connected network for image fusion, leveraging deep 

learning for feature extraction and fusion [8]. NestFuse, 

developed by, incorporates nest connections and spatial/ 

channel attention models to enhance fusion performance [2]. 

Moreover, advancements in image fusion technology have 
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led to the development of innovative approaches such as 

generative adversarial networks, total variational models, and 

adaptive algorithms that further enhance the quality and 

details of fused images [9]. These CNN or GAN-based fusion 

frameworks have shown exceptional fusion capabilities [2]. 

Furthermore, research efforts have explored decision-level 

fusion detection methods for visible and infrared images 

under low light conditions [10]. These methods aim to 

enhance object detection precision by effectively combining 

information from both image types 

[10]. Additionally, studies have highlighted the advantages 

of RGB-NIR fusion for low-light imaging, demonstrating 

promising results in improving image quality in challenging 

lighting conditions [11]. Techniques like weighted sparse 

representation, gradient domain guided filter pyramid fusion, 

and spectral graph wavelet transforms have demonstrated 

superior performance in generating fused images with 

enhanced visual effects and detailed texture information [12]. 

III.  METHODOLOGY 

In this section, we will describe the parameters of our 

study. We selected 4 state-of-the-art deep learning image 

fusion models. A uniform dataset was used for the training 

and evaluation of these models. 

A. Dataset Description 

For our research, we utilised the Low Light 

Visible-Infrared Paired (LLVIP) dataset [7]. This dataset is 

specifically designed for low light surveillance applications 

and comprises visible and infrared image pairs as illustrated 

in Fig.1. It has captured a total of 26 different scenes through 

16,836 VIS-IR image pairs. This allows for a more 

comprehensive analysis and comparison of fusion methods 

under challenging lighting conditions [13]. All captured 

scenes depict pedestrians, automobiles and various others 

object on the road between 1800 hours and 2200 hours. 

The LLVIP dataset offers a diverse range of low light 

scenarios, capturing the complexities of real-world 

surveillance environments. The utilisation of paired visible 

and infrared images in image fusion is vital in preserving 

image details, reducing noise and enhancing overall visibility 

in low light conditions. 

By leveraging the LLVIP dataset, our study aims to 

provide a comprehensive comparative analysis of various 

state-of-the-art, deep learning based image fusion methods. 

 
Fig. 1. Sample IR-VIS image pairs from LLVIP Dataset. 

B.  Image Fusion Methods 

Models were trained on identical sets of grayscale, resized 

(256x256) images from the LLVIP dataset. The training 

parameters for each model were kept identical to maintain 

consistency. 

C. Deep Image Decomposition Fusion (DIDFuse) 

DIDFuse makes use of an auto-encoder architecture to 

translate visible and infrared images into distinct feature 

maps. These feature maps are designed to capture the 

low-frequency background information and high-frequency 

detail information [4] present in the images. The fundamental 

principle of DIDfuse revolves around the utilisation of a loss 

function that ensures the similarity of background features 

and dissimilarity of detail features between the original 

images. During the [4] fusion process, the background and 

detail feature maps are amalgamated independently through a 

specialised module. Subsequently, the decoder is employed 

to reconstruct the fused image with the objective of 

preserving the highlighted targets from the infrared image 

(maintained by the similarity in background features) and the 

intricate texture details from the visible image (maintained by 

the dissimilarity in detail features) as shown in Fig.2. 

 
Fig. 2. The architecture of the DIDF use Network 
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D. SwinFusion 

SwinFusion introduces an innovative method for image 

fusion by utilising the Swin Transformer architecture. Unlike 

traditional approaches, SwinFusion utilises Swin 

Transformer blocks to extract shallow and deep features from 

each source image, enabling a detailed analysis at various 

scales to capture essential information [14]. Instead of 

employing a simple process for combining these features, 

SwinFusion incorporates an "attention" mechanism that 

prioritises critical details from both images as shown in Fig.3. 

This allows features from any region of the images to 

influence the final fused image and capture long-range 

relationships [15]. This approach enhances accuracy and 

information preservation compared to conventional fusion 

techniques [16]. 

 
Fig. 3. The architecture of the Swinfuse Network 

E. Dual-branch Network for Infrared and Visible Image 

Fusion 

In our study, we compared and evaluated four deep 

learning based image fusion algorithms based on their 

effectiveness in low light surveillance applications. All the 

Dual-branch Network for Infrared and Visible Image Fusion 

utilises Dense Convolutional Blocks (DCBs) in each branch 

to ensure smooth encoding. This method is very efficient in 

extracting features crucial for low light fusion The visible 

branch captures high-level semantic information and spatial 

details through shallow features, while the infrared branch 

focuses on extracting deeper feature maps containing thermal 

information [4]. Through a feature fusion strategy like 

channel concatenation, the network merges these distinct 

features as shown in Fig.4, ensuring the preservation of both 

spatial and thermal details in the final fused image. 

 
Fig. 4. The architecture of the Dual Branch fusion Network 

F. DenseFuse 

DenseFuse introduces a unique approach to convolutional 

neural networks by integrating dense blocks within its 

encoder architecture. These dense blocks enable feature reuse, 

where feature maps from each convolutional layer are 

concatenated and passed as input to all subsequent layers 

within the block. This dense connectivity enhances feature 

propagation, leading to a more comprehensive extraction of 

features from input images. Subsequently, a fusion strategy is 

employed to integrate complementary feature maps, followed 

by a decoder network that reconstructs the final fused image 

[4] [17] [18] as shown in Fig.5. 

 

Fig. 5. The architecture of the Densefuse Network 

Table I: Quantitative results od different methods. The 

largest value is shown in bold, and the second largest value is 

underlined 

 

G. Performance Metrices 

To evaluate the effectiveness of the various image fusion 

techniques under low light conditions, we employed a variety 

of qualitative metrics. Each of these metrics quantifies 

different features of the fused image. Metrics like Entropy 

(EN) and Mutual Information (MI) compute the valuable 

information that is preserved in the fused image from the 

input images. The fine details and structural coherence in the 

image is quantified using Spatial Frequency (SF). 

Error-based metrics like Mean Square Error (MSE) and Peak 

Signal to Noise Ratio (PSNR), quantify the fidelity of the 

fused image. Additionally, Visual Information Fidelity (VIF) 

metric considers visual perception factors (visual appeal) of 

the fused image. Average Gradient (AG) and Edge 

Information (QABF) Focus on sharpness, and structural 

integrity in the fused image which is crucial for surveillance 

tasks such as object recognition. Finally, similarity metrics 

like Coefficient C o r r e l a t i o n (C C), a n d S u m o f C o r 

r e l a t i o n o f Differences (SCD) measure the consistency 

between the input and the fused image. 

IV. EXPERIMENTAL RESULTS 

In this section, we will present the results of our 

comparative analysis on the LLVIP dataset. The 

corresponding fused images of each model are depicted in 

Figure 6. This is followed by a quantitative analysis of the 

results of each model depicted in Table-I. 

The attention guided cross domain approach in the fusion 

layer of SwinFuse is able to fuse the corresponding VIS and 
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IR features of low light images more efficiently when 

compared to the other methods. 

The results in Table-1 validate this.SwinFuse 

outperformed all the other models by having the highest 

scores in seven of the ten metrics that were considered for 

evaluation. It had the best scores for EN, MI, SF, VIF, AG, 

SCD and QABF. 

SwinFuse was followed by DenseFuse which had the 

highest scores in the remaining three metrics. 

 
Fig. 6. Quantitative results for different methods. Areas 

marked by red and blue boxes are features retained from IR 

and VIS image respectively. 

DenseFuse had the best scores in MSE, PSNR, CC and the 

second best scores in EN, MI, VIF, SCD and QABF. 

DenseFuse performed extremely well in error-based 

metrics like MSE and PSNR. It also has competing scores for 

similarity metrics like CC and SCD. 

By utilising dense blocks in its encoder, DenseFuse was 

able to capture features from the input images effectively 

when compared with DIDFuse and Dual Branch Fusion. 

V. CONCLUSION 

In this paper, we successfully conducted a comparative 

study of four state-of-the-art, deep learning based image 

fusion models on the LLVIP dataset to test their applications 

in low light surveillance. We analysed the architectures of all 

four models and explained them briefly. Ten evaluation 

metrics were utilised and were used to compare the 

effectiveness of each model. Our results were definitive and 

concluded that out of the four models, SwinFuse had the best 

performance in fusing images in low visibility. We 

conclude that models that utilise a specialised fusion 

technique like the attention guided cross domain fusion of 

SwinFuse are cable of fusing low light images more 

efficiently than the models that utilise standardised fusion 

techniques like summation, L1 norm and weighted average. 

In the future, we can extend this work by focusing on 

specific low-light surveillance scenarios and factor in adverse 

weather conditions. We can also explore real-time processing 

of the fusion models, which is crucial for practical 

applications. 
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